Auto-JacoBin: Auto-encoder Jacobian Binary Hashing

نویسندگان

  • Xiping Fu
  • Brendan McCane
  • Steven Mills
  • Michael Albert
  • Lech Szymanski
چکیده

Binary codes can be used to speed up nearest neighbor search tasks in large scale data sets as they are efficient for both storage and retrieval. In this paper, we propose a robust auto-encoder model that preserves the geometric relationships of high-dimensional data sets in Hamming space. This is done by considering a noise-removing function in a region surrounding the manifold where the training data points lie. This function is defined with the property that it projects the data points near the manifold into the manifold wisely, and we approximate this function by its first order approximation. Experimental results show that the proposed method achieves better than state-of-the-art results on three large scale high dimensional data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit Density Estimation by Local Moment Matching to Sample from Auto-Encoders

Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of the unknown data generating density. This paper contributes to the mathematical understanding of this phenomenon and helps define better justified sampling algorithms for deep learning based on auto-encoder variants. We consider an MCMC where each step samples from a Gaussian whose me...

متن کامل

Self-Supervised Video Hashing with Hierarchical Binary Auto-encoder

Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed Self-Supervised Video Hashing (SSVH), that is able to ca...

متن کامل

Learning invariant features through local space contraction

We present in this paper a novel approach for training deterministic auto-encoders. We show that by adding a well chosen penalty term to the classical reconstruction cost function, we can achieve results that equal or surpass those attained by other regularized auto-encoders as well as denoising auto-encoders on a range of datasets. This penalty term corresponds to the Frobenius norm of the Jac...

متن کامل

Higher Order Contractive Auto-Encoder

We propose a novel regularizer when training an auto-encoder for unsupervised feature extraction. We explicitly encourage the latent representation to contract the input space by regularizing the norm of the Jacobian (analytically) and the Hessian (stochastically) of the encoder’s output with respect to its input, at the training points. While the penalty on the Jacobian’s norm ensures robustne...

متن کامل

A Generative Process for Contractive Auto-Encoders

The contractive auto-encoder learns a representation of the input data that captures the local manifold structure around each data point, through the leading singular vectors of the Jacobian of the transformation from input to representation. The corresponding singular values specify how much local variation is plausible in directions associated with the corresponding singular vectors, while re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.08127  شماره 

صفحات  -

تاریخ انتشار 2016